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ABSTRACT 

The TEM mode reflection coefficient is analyzed for a symmetric 
parallel-plate waveguide terminated in a ground plane and radiating into 
a perfectly reflecting sheet oriented normal to  the guide axis. By using 
the wedge diffraction method the reflection from the conducting sheet is 
treated in t e rms  of successive contributions o r  bounces that describe 
the interacting waves between the waveguide wedges and the reflector. 

Each of these bounce waves can be resolved into component cylindri- 
cal  waves. The scattering of each of these component cylindrical waves 
by the guide produces two subsequent cylindrical waves. 
the geometrical optics component which results from reflection from the 
ground plane and the aperture component which represents the effect of 
the aperture in the ground plane. 
sheet is obtained by summing these iterative contributions. 
from this analysis a r e  in good agreement with measurements and the 
Fourier transform analysis presented in Ref 4.  

These are: 

Thus the total reflection from the 
The results 

The transmission between waveguides i s  a by-product of the reflect- 
ing sheet analysis. 
tween two waveguides with each mounted in a ground plane and facing each 
other 

Calculated results are given for the transmission be- 
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THE REFLECTION COEFFICIENT OF A GROUND-PLANE 
MOUNTED TEM MODE PARALLEL-PLATE WAVEGUIDE 

ILLUMINATING A CONDUCTING SHEET 

I.  INTRODUCTION 

The reflection coefficient of a TEM mode symmetr ic  parallel-plate 
waveguide illuminating a perfectly conducting sheet oriented normal to 
the guide axis as shown in F i g .  1 has been analyzed by wedge diffraction 
techniques. lS2 The analysis of this reflecting sheet problem gives in- 
sight into the basic diffraction behavior of small aperture antennas which 
radiate into overdense plasmas. This analysis is applicable for  space- 
craft reentry situations in which the plasma medium can be adequately 
modeled by a simple reflecting sheet. 

Fo r  the half-plane guide, multiple interactions between the guide 
and the reflector are negligible hence the reflection coefficient was ob- 
tained by considering only one single bounce wave. Fo r  guides with 
wedge angles (WA) less than 70"-80", the reflection coefficient was 
found by assuming that the interactions between the guide aperture and 
the reflecting sheet a r e  bouncing plane waves and obtaining these inter-  
action waves through a self consistency procedure. Fo r  the ground 
plane case ( W A  = 90")  and the large wedge angle case the interacting 
waves were treated as successively bouncing cylindrical component 
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Fig .  1 .  Symmetric parallel-plate guide radiating 
into reflecting sheet 
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waves. The total reflection coefficient in the grottnd plane case was 
obtained in Ref. 1 by summing the f r ee  space reflection coefficient, 
o r  that of the guide radiating in f ree  space,' and the contribution of 
the first five bounce waves. Higher bounces were not included due to 
computational complexities 

Recently NASA engineers at Langley, Va.  analyzed the same 
ground plane problem by using the Fourier Transform method with a 
dominant mode assumption.' 
obtained in Ref. 1 indicated that effects of the higher order  bounce waves 
a r e  significant, especially when the spacing between the ground plane 
and reflecting sheet were near multiples of half wavelengths. In this 
report  appropriate simplifications a r e  made in the diffraction method 
analysis of Ref. 1 fo r  ground-plane guides to allow the inclusion of up 
to several  hundred higher order  bounce waves. In fact, the summation 
i s  carr ied on until contributions from subsequent higher order  bounces 
a r e  indeed negligible. 

Comparison of their  results and that 

A by-product of the analysis for  the reflecting sheet problem is 
the solution to a different problem: the transmission between identical 
waveguides. In the transmission problem the s u m  of the odd-numbered 
bounces for the reflecting sheet problem gives the transmission to the 
receiving guide whereas the even-numbered bounces give the reflection 
coefficient of the transmitting guide. The sum of the transmitted and 
reflected waves in the transmission problem is equal to the reflected 
wave for the reflecting sheet problem. 
for  the transmission between ground-plane mounted guides. 

Calculated results are presented 

The free-space reflection coefficient for the ground-plane mounted 
TEM parallel plate waveguide' is given by 

ll 

where 
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with 

and 

11. REFLECTION COEFFICIENT ANALYSIS FOR 
THE GROUND-PLANE MOUNTED GUIDE 

By the wedge diffraction method the reflection coefficient of the 
waveguide is the superposition of the f ree  space reflection coefficient 
and the reflection coefficient caused by the presence of the conducting 
sheet. 
bounces, the f i r s t  bounce wave is the f ree  space radiation from the wave- 
guide which reflects from the sheet back onto the waveguide. 
bounce wave then scat ters  from the waveguide wedges producing a second 
bounce wave which propagates toward the reflecting sheet. 
bounce wave in turn reflects from the sheet back onto the waveguide 
giving r ise  to a third bounce wave, and s o  on to higher order bounces. 
Each bounce produces a contribution to the reflected TEM mode in the 
waveguide . 

Formulating the reflection from the sheet in te rms  of successive 

The first 

The second 

A. On-Axis Field of the TEM Mode 
Ground-Plane Mounted Guide as 
the F i r s t  Bounce Wave 

Calculations of the f r ee  space fields of various parallel-plate guides 
has been made''' using the near field formulation outlined in Ref. 5. 
These calculations show that in the region of the projected guide c ros s  
section the f ree  space wave radiated from the guide may be represented 
by an isotropic cylindrical wave from a line source.  
location may be determined exactly by examining the phase curvature as 
was done in Ref. 1 .  In general, however, the line source may be assumed 
to be located at the center of the guide aperture to a very good degree of 
approximation. 

The line source 
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This and subsequent approximations in the analysis a r e  valid pro- 
vided the observation distances are sufficiently removed f rom the aperture. 
For  guidewidths (a) less than a wavelength this minimum distance, which 
is dependent on the guide width, is less than a wavelength. Because of 
this limitation in the general analysis, the conducting sheet is required 
to be sufficiently removed from the aperture for the analysis to be valid. 
F o r  example, for  a guide width equal to  0.278 X the minimum distance 
(d) is approximately 0.5X . 

The equivalent cylindrical wave for the f i r s t  bounce wave is given 
by the free  space field on the axis of the guide; this field as analyzed by 
wedge diffraction may be obtained by summing the singly and doubly 
diffracted fields as shown in F i g .  2. 
edges 1 and 2 expressed in ray form a re  given respectively by 

The singly diffracted wave from 

1 lT = - sin - 
n n _ _  ( cos 21 - cos -- ’ 

and 

F i g .  2. Singly and doubly diffracted rays from the guide. 
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where the exponential t e rm in Eq. (3)  results from referring the phase 
to edge 1. 

The singly diffracted ray which illuminates the opposite edge giving r ise  
to the doubly diffracted waves is given by 

The doubly diffracted ray is then given by 

(5) 

The total radiation from the guide is then 

The on-axis field radiated by the guide is then obtained by taking the limit 
on RT(8) as 8 -0 and is given by 

-j(kr t:) 
(8 a) HT(r, e=o)= [ lim RT(e)]  e 

8-3  4m-Z 

1 7T = jka - - cot - t [ 1.5 1.5 
3 
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where 

The relationship expressed in Eq. (8) may also be obtained by 
performing the limit operation on the near-  zone field expressions found 
in Ref. 1 as w i l l  be discussed in a la te r  report.‘ 
is then simply expressed as an isotropic cylindrical wave with field 
values given by Eq. ( 8 ) .  

The f i r s t  bounce wave 

B . Multiple Bounce Formulation 

For  purposes of determining the second bounce wave in the projected 
guide c ross  section, the f i r s t  bounce wave may be treated as that of an 
isotropic cylindrical wave from a line source located at a distance 2d 
from the guide aperture, where d is the distance to the sheet as shown 
in F i g .  3a.  
the waveguide may be analyzed by the wedge diffraction method. Cal- 
culations show. that the scattered wave can be resolved into two cylindri- 
cal  wave components. 
optics component o r  the reflection of the incident cylindrical wave by the 
ground plane without an aperture.  
source located at the image in the ground plane of the equivalent line source 
representing the f i rs t  bounce wave as shown in Fig.  3b. The second com- 
ponent is the aperture component which i s  the difference between the total 
second bounce wave and the geometrical optics component. The aperture 
component i s  very similar to the backscatter by a s t r ip  o r  thick wall. 
Calculations show that in the region of the projected guide c ros s  section 
the aperture component may be represented by an isotropic cylindrical 
wave with its source located at the center of the aperture, as shown in 
F i g .  3c.  

The scattering of a cylindrical wave by the wedges forming 

1 The principal component is the geometrical 

This wave component has a virtual 

The aperture component of the scattered field resulting from an 
incident cylindrical wave depends only on the value of the incident field 
and is independent of the source location provided the source is sufficiently 
removed from the guide, as discussed previously. 
a shadow boundary approximation for the wedge diffraction function VB 
permits the value of the aperture component to  be simply computed. 

This fact  together with 

The 
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TOTAL SCATTERED GEOMETRICAL OPTICS 
WAVE COMPONENT 

(a )  (b)  

I I 

I I 

APERTURE 
COMPONENT 

( c )  

Fig. 3 .  Scattering of a cylindrical wave in the 
ground plane case.  

simplification results because the aperture component may be determined 
using plane wave diffraction from the waveguide wedges. 

F o r  a plane wave of unit magnitude normally incident on the wave- 
guide wedges as shown in F i g .  4 the diffracted field at a point P is given 
by 

( 9 )  

where 
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f- 

f NCI DENT 
PLANE WAVE 

Fig .  4. Scattering of an incident plane wave 
in the ground plane case.  

corresponds to  the singly diffracted ray from each edge which illuminates 
the opposite edge and 

rtr,  rtr,  

is the diffracted field at (r, +) due to  a line source at (ro, q0)! 
t e rms  in Eq. (9) result f rom the singly diffracted waves from the wedges 
whereas the ud terms  express the doubly diffracted waves. 

The Vg 

The terms V g ( r ,  $2 n/2 )  are  given by the Fresnel  integral formu- 
lation of Hutchins and K o u y o ~ m j i a n ~ ~ ~  in which the Fresnel  functions can 
be approximated in the region corresponding to the projected guide c ross  
section by 
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(12) C(W) 2 w f o r  W small. 

S(W) y 0 

Thus a shadow boundary approximation for VB is obtained as shown in 
Appendix 111 and is given by 

- 1  
( 1 3 )  Vg(r ,  +) = z exp(jkr cos +) 

Q 

for  + = IT 

where the t sign i6 for  + > IT and the minus sign is for + < IT . For  the 
ground plane mounted guide (90" wedge angle = (2-n)m = interior wedge 
angle), + >  IT and n =  1.5. 

The following approximation is also valid in the projected guide 
c ros s  section: 

a 
(14) 

Thus in the region of the projected guide c ross  section the f i r s t  two 
t e rms  in Eq. (9) may be approximated as 

IT 
$1 t; 

t cos 
2 = exp(jkro cos+,) 

2 
- 1  - L 

4" L 1 

- J $  1 m J 
J;l 1 m e  - - cot - = exp(jkro cosb,\ 

L " J  
9 



where ro and +o are  the coordinates of the observation point P with 
respect to  the center of the aperture and hence 

The te rm exp(jkro cos +o) in Eq. (15) is identified as the reflected 
plane wave f rom the ground plane without the waveguide aperture present 
and hence corresponds to the geometrical optics component of the scattered 
field for  plane wave incidence The second two t e rms  in Eq. (15) together 
with the VB(r,$-8/2) and u d  t e rms  of Eq. (9) constitute the aperture 
component of the plane wave diffraction. 
asymptotic form valid for large values of kr[ 1 t cos(+ - a /2) ]  may be used: 

For the V g ( r , + - a / 2 )  t e rms  the 

2 2 - - sin - r 3 3 
2 

cos -7F 3 - cos y+ 3 
- 2) 

- j k r  t;) 
e 

For  the case of cylindrical wave incidence as shown in Fig.  3 the 
aperture component of the scattered wave is, to a very good approximation, 
the same as that for plane wave incidence shown in F i g .  4, with the plane 
wave field equal to the incident field of the cylindrical wave at the wave- 
guide aperture.  Thus the aperture component f o r  cylindrical wave inci- 
dence is obtained from Eqs. (15) and (17) as 

and 

r IT 

where Hi is the incident field of the cylindrical wave at the aperture.  

10 



Since the f i r s t  bounce wave can be adequately described by an iso- 
tropic line source at the center of the aperture of the waveguide image, 
the first bounce contribution to the reflection coefficient is obtained as 
shown in Fig. 5a. 
source I1 is given by (Ref. 5, Eq. (18)) 

The modal current induced in the waveguide by a line 

and 

IT 

IT cot - 11 = jka - - ( 1.5 1 e5 
1 

(19b) 

I I 

1, 
e 

AI 
FIRST BOUNCE r, I 

I I 

13 
0 

2 d  

1 2  

4d 6 d  . 

Fig. 5.  Bounce contributions to reflection coefficient. 
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where HT(Q) is the free  space magnetic field at point Q as  radiated from 
the guide with an incident modal current  (sa from within the guide. 
line source 11 radiates the on-axis field of the waveguide as given by 
Eq. (8) .  Using the value of HT(Q) as given by Eq. (8) the first bounce 
reflection coefficient is obtained from Eq. ( 1  9) as 

The 

where 

and RI(’) is given by Eq. (8b). 

The scattering of the cylindrical wave from 11 by the waveguide 

The geometrical optics component of the second 
results in a second bounce wave which is composed of two components 
as shown in F i g .  3. 
bounce wave reflects from the sheet back onto the waveguide such that 
it may be represented by the line source I1 located at a distance 4d from 
the guide aperture, as shown in Fig.  5b. The aperture component of the 
second bounce wave reflects onto the waveguide as described by the line 
source 12 in F i g .  5b. The value of 12 is obtained by equating the value 
of i ts  radiated field with that of the aperture component in Eq. (18) 

l r .  
-jkro t j - jkro 

e H A =  12 e = Hi KA . 
5 (22) 

H* i s  the incident field of the illuminating line source 11 at the guide 
aperture in F ig .  5a, as given by 

-jk(2d) 4- j 7 
4 e Hi = Ii 

Hence the value of I2 is  given by 

12  

I 
8 
I 
8 
n 
8 
I 
1 
8 
8 
1 
I 
I 
I 
I 
I 
1 
1 
I 
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The corresponding second bounce reflection coefficient is then given by 
the modal current  induced by 11 and 12 as shown in Fig. 5b: 

I -  - j k( 2 d) 
e 
m (25) r2 = c 4- 12 

The n -th bounce wave is given by n cylindrical wave components 
with sources: 11 at n(2d), 12 at (n-l)(2d),  . . ., In at 2d. The n-th source 
i s  given by 

n- 1 
e - jkZd( n-m) c Irn 4zTizGJ 

(26)  In = KA 
m= 1 

and the n-th contribution to the reflection coefficient is given by 

- j k2d( n-m t 1 ) 

2d( n-m t 1 ) 

e rn = C ,f I m L J  . (27 1 
m= 1 

The total reflection coefficient due to the reflecting sheet or  plate is 
given by 

00 

P 

n= 1 

The total reflection coefficient r of the waveguide is obtained by super- 
posing r and the free  space reflection coefficient rS: P 

(29) r = rs t rp . 

C. Results 

The total reflection coefficient for  ,he ground-plane mounted guid 
calculated by wedge diffraction analysis is compared to the results of 
the Fourier Transform solution' and to measured results in Figs. 6 
through 18. Figures 6 and 7 shows the comparisons of the reflection 
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coefficient in both phase and magnitude fo r  a ground-plane mounted guide 
with guide width equal to  0 278 X and with the reflector spacing (d) ranging 
from 0.5 to 2.01 

Figures 8 and 9 show the comparison for the same guide with reflector 
spacing ranging from 2.01 to 2.5X and from 19.51 to  20.0X. For  
la rger  reflector spacing near 2 0 1  the resonance behavior becomes much 
more  localized as characterized by the sharp spike in the reflection 
coefficient at critical spacings. 

The measured data in Fig. 6 was  obtained using a 
narrow angle sectoral  horn to simulate a parallel-plate waveguide 1 

The comparison fo r  the guide width equal to  0.332X case is shown 
in Figs.  10 and 11. 
guide width. In Figs .  10 and 12 the measured data were obtained by Jones 
and Swifl! using an extremely narrow angle sectoral  horn. 

Figures 12 and 13 compares the results for a 0.4231 

In F i g s .  14, 15, and 16 the comparison i s  made for guides of widths 
equal to 0.6X , 0.81, and 1 .OX , respectively, with reflector spacings 
ranging from 1.51 to 2 .  O h  . 

Figures 17 and 18 compares the two methods for guide width equal 
to 1.01 and reflector spacing ranging from 4 .51  to 5 .01  and 19.51 to 
20.0 X , respectively. 

As can be seen from the comparison, remarkably good agreement 
is found in general between the reflection coefficient calculated by the 
wedge diffraction method and that by the Fourier  Transform method. 

The larger  differences found between the two methods for relatively 
small d / a  may be attributed to inadequacies in the uniform line source 
approximation of the guide radiation in the wedge diffraction method. 
d / a  increases,  the uniform line source 
and the agreement between the two methods is seen to become much 
closer . 

As 
assumption becomes quite good 

By the close agreement between the results for d > 1 .Oh, the 
dominant mode assumption made in the Fourier Transform solution* 
can be concluded to be quite accurate since higher order  mode effects 
a r e  included in the wedge diffraction solution. Appendix IV gives both 
the f ree-  space reflection coefficient and the on-axis guide radiation computed 
with and without the presence of higher order  modes. 
shows that the presence of higher order  modes affects the magnitudes of 
these quantities very little and only intl'oduces a small  phase correction. 
It is thus concluded that this higher order mode phase correction factor 
causes the small disagreerrlent between the results obtained from the 
Fourier  Transform and the wedge diffraction methods. 

This comparison 
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The resonance behaviors observed at reflector spacings equal to 
integral multiples of half wavelengths may be further confirmed by 
examining the Green's function for a magnetic line source located in a 
parallel-plate region. Morse and Feshback" give the Green's function 
of a source located at (xo,yo) as 

where h is the cavity spacing. 

Kouyoumjian" has also obtained the same expression by a dif- 
ferent method. 
integral multiples of half wavelengths, resonance behavior is also 
observed for a magnetic line source, which may simulate an infinitesimally 
small  TEM mode waveguide. 

It may then be noted that at cavity spacings h equal to 

111. THE TRANSMISSION PROBLEM 

A by-product of the above analysis for the reflecting sheet problem 
shown in F ig .  1 is the solution for the transmission problem shown in 
F ig .  19. Only the ground plane case (WA = YO") is considered for the 
transmission problem. The wave transmitted into the receiving guide 
is given by summing only the odd-numbered bounces of Eq. (27) and the 
sum of the even-numbered bounces plus rs gives the reflection coefficient 
of the transmitting guide. 

Representative calculations of transmission and reflection for the 
transmission problem are  given in F igs .  20, 21, and 22 for guide widths 
equal to 0.278X and 0.332X, along with the reflection coefficient fo r  the 
reflecting sheet problem. It i s  seen that the transmission peaks occur 
at  every quarter wavelength in d o r  every half wavelength in the width 2d 
of the cavity formed between the two ground planes. 
reflecting sheet problem, the peaks occur at every half wavelength in 
width d of the cavity formed between the reflecting sheet and the ground 
plane. 

In the corresponding 
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REFLECTED- +INCIDENT TRANSMITTED 

F i g .  19.  Transmission between two identical ground-plane 
mounted parallel-plate waveguides. 

Image theory applies to the transmission problem of Fig.  19 when 
both guides a re  transmitting equal incident waves and consequently states 
that the reflection coefficient of each i s  the same as that for the reflecting 
sheet problem. This observation provides no additional information since 
the image problem is  essentially identical. 

IV. CONCLUSIONS 

The reflection coefficient of a TEM mode symmetric parallel-plate 
waveguide mounted in a ground plane and illuminating a perfectly reflect- 
ing sheet has been analyzed by a simplified version of the method in Ref. 1. 
The simplification allows the practical inclusion of several  hundred higher- 
order  interactions. As was shown in Ref. 1, the interaction between the 
waveguide and reflector can be described in t e rms  of successively bouncing 
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cylindrical waves. Summation of the contributions of the multiple bounces 
plus the free  space reflection coefficient of the guide yields the total 
reflection coefficient 

An important physical insight gained by the wedge diffraction 
analysis is that multiple interactions between the guide and the reflector, 
i .e ., higher order bounce waves, contribute quite significantly to the 
total reflection coefficient of the waveguide. In fact, at reflector spacings 
equal to an integral multiple of A / 2  the reflection coefficient r i s e s  to unity 
magnitude. The results of this analysis agrees well with the Fourier 
Transform analysis4 and with measurements. 

The wedge diffraction analysis employed in this report  fo r  the 
reflecting sheet problem analyzes cylindrical wave interactions o r  bounces 
between the reflecting sheet and the ground plane and thus provides a 
solution to the transmission between identical waveguides facing each 
other. This problem is solved by merely summing the odd-numbered and 
the even-numbered bounces to obtain the transmitted and reflected waves, 
respectively. 
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APPENDIX I 

A Fortran IV program using the OSU-PUFFT Compiler has been 
written for the computation of the reflection coefficient in Eq. (29) .  A 
statement listing i s  as follows: 
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1 
SE X E C u T E  PUFF T 
S P U F F T  230 

13 

32 

50 

109 

74 

77 

C O M P L E X  ABC r CF35 
COMPLEX P P I F r X P I F r G A ~ ~ S r V R l r V ~ 2 r P ~ A M  
C O M P L E X  
D I M E N S I O N  C U R ( 5 0 0 ) r C U 1 ( 5 0 ~ ) r C A ~ R ~ 5 O O ) r G A ~ I ~ S O O )  
P I = 3 0 1 4 1 5 9 2 6 5  
T W P = 6 0 2 8 3 1  tis3 
P P I F = C E X P ( C M P L X ( G o  r D a 7 8 5 3 3 8 2  ) 

T D ? r  X r R 2  r R T  r CLJr C r G A M  r T E M r  T E M P  

X P I F = C O N J G ( P P I F )  
STWP=SORT (TWP 1 
C l = S I N ( T W P / 3 o O )  
R G T 1 = - 4 0 / 3 o * C l  
R G T O = - R G T I  
R E A D  ( 5 r 1 3 )  K C  
F O R M A T  ( 1 2 )  
D O  201 K K = l  r K C  
R E A D  (5932 ) 
FORMAT ( 3 F 1 0 0 5 r I 2 )  
C A L L  V B  ( H V B l r U V B l r A * 7 0 o O * l o 5 )  
C A L L  V B  ( R V B 2 r U V B 2 r A * 2 7 0 ~ 0 r 1 0 5 )  
V B l = C M P L X ( R V B l  r U V 5 l  1 
V B 2 = C M P L X ( R V B 2 r U V 8 2 )  
T D O = R G T O / T W P * X P I F  

A *  GAMS* N C  

X=-A*PPIF-~O/(~O*PI)*SQRT(~O)*XPIF+TDO*(VB~+VB~) 
X = X - ~ O O / ~ O ~ + C O T A N ( ~ ~ ~ Y ~ ~ ~ ~ ~ ~ / ~ O ~ * X P I F / T W ~  
R 2 = R G T  I * (Vt3 1 + V B 2  1 
R T = ~ N P L X ( O o O r T W P * A ) - C O T A N o / 1 . 5 + l ? 2  
C U = R T / S T ~ P * C ~ P L X ( 3 . 0 . - 1 . )  
CUR ( 1 ) = R E A L  ( C U  ) 
C U I  ( l ) = A I M A G ( C U )  
C = R T / C M P L X  ( 3 . 3 r T W P * A  ) * P P I F / S T W P  
W R I T E  (6950) T D G r X r R 2  
F O R M A T  (1H r6E15.7) 
W R I T E  ( 6 r 5 0 )  R T * C * C U R ( l ) r C U I ( I )  
D O  200 I = l * N C  
R E A D  ( 5 r 1 0 0 )  DrNU 
F O R M A T ( F l O o 5 r  15) 
YR I T E  (6.74 1 A r D 
FORMAT ( / / l H  * l 2 H G U I D E  WIDTH=rFlOo5~20X~18HREFLECTOR S P A C I N G = r F l O o  

W R I T E  (6977) 
F O R M A T ( 1 H  r l 5 H G A M M A  I N C R E M E N T I ~ ~ X I ~ ~ H G A M M A  B O U N C E S ~ 1 7 X r l l H G A M M A  T O  

ABC=GAMS 
TD=2.O*D 
G A M = C * C M P L X ( C U R ( ~ ) * C U I ( ~ ) ) / S ~ ~ T ( T D ) * C E X P ( C M P L X ( O O * - T W P * T D ) )  
TEM=GAM 
PTEM=~~GO/PI*ATAN~(AIMAG(TEM)*REAL(TEM) 1 
GAMR ( 1 ) = R E A L  ( GAM 1 + R E A L  ( CAMS ) 
GAM1 ( 1 ) = A  I M A G  (GAM ) + A  I M A G (  GAMS ) 
CBB=GAM 
AGAM=SQRT(GAMR(  1 )**2+GAh41 ( 1 ) * *2 )  

N= 1 
A T E M Z C A B S  ( T E M  1 
W H I T E  
D O  200 N=2rNB 

NM=N- 1 
X N = F L O A T ( N )  
D O  156 M = l r N M  
X M = F L O A T ( M )  

2511) 

2 T A L / )  

P G = 1 8 O o / P I * A T A N 2 ( C A M I  ( 1  ) r G A M R (  1 ) )  

( 6 9  23 ) Nr ATEM r PTEM r A T E M  r P T E M r  AGAM r P G  

T E M P = C M P L X ( O . r O o )  

T E M P = X * C M P L X ( C U R ( M ) r C U I ( M ) ) / S ~ R T ( T D * ( X N - X M ) ) * C E X P ( C M P L X ( O o * - T W P * T D  I 

I 
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29 F O R M A T  ( 5 X * I 5 * 5 X * 6 E 1 5 0 7 )  
X X N = F L O A T  (N 
KHE=N/2 
X X Y  =XXN/Zo  0 
X K H E n F L O A T  (KHE 1 
I F ( A B S  (XXY -XKHE ) 0 G T  0 25 1 G o  T O  573 

ABC = ABC+TEMP 

GO T O  937 
573 C B B = C B B + T E M P  

200 C O N T I N U E  
201 C O N T I N U E  

S T O P  
END 
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APPENDIX I1 

The Generalized Pauli Series used in this analysis for the diffraction 
of a plane wave by a wedge was formulated by Hutchins and K o u y o ~ r n j i a n ~ ~ ~  
and i s  presented below. The geometry involved is as shown in  Fig.  2 3 .  

P 

F i g .  2 3 .  Plane wave diffraction by a 
conducting wedge. 

The diffracted field is given by 

where the t sign is for the electric field polarization perpendicular to 
the edge of the wedge and the - sign i s  f o r  the magnetic field polarization 
perpendicular to  the edge of the wedge. The diffraction function VB is 
given by 

where 
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with 

a = 1 t cos(p - ~ ~ I T N ) ,  

and N is a positive o r  negative integer o r  zero  which most nearly satisfies 
the equations 

2nrN - /3 = t IT for I+, 

A Fortran IV program for this VB function has been written by 
The Fresne l  integral subprogram W.D. Burnside and E.L. Pelton. 

uses  the algorithm found by Boersma.I2 
subprograms is as follows. 

A statement listing of these 
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S U B R O U T I N E  V R  ( R V U * \ J V i 3 * R r A N G r F N )  
COMPLEX DEM.TOPICOMIEXP.YPPI *UNPI 
D O U B L E  P R E C I S I O N  WAGVDPITSIN 
P I  =30 1,4 1'33265 
T P I = 6 . 2 8 3 1 8 5 3 0  
A N G = A N G * P I / l B O * O  
DEM=CMPLX (9 0 *FN*SORT ( T P  I 1 1 
T O P = C E X P  ( C M P L X ( C  0 9  9 - ( T P  I *w+P I /4 00 ) ) ) 
COM=TOP/DEM 

D N = F L O A T  ( N )  

B O T L = S O R T  ( T P I * R * A  
E X P = C E X P ( C M P L X ( O o O * T P I * R * A ) )  
C A L L  F R N E L S  ( C I S ~ B O T L )  
C x S Q R T  (P I / 2  0 ) * ( 0.5-C ) 

S =  S Q R T ( P I / 2 . O ) * ( S - O . 5 )  
R A G =  (P  I +ANG 

N=IFIX((PI+ANG)/(200*FN*PI )+0.5) 

A=l.O+COS(ANG-2.O*FN*PI*QN) 

/ ( 2 0  O*FN 1 
T S  1 N = D S  I N  ( R A G  ) 
T S = A B S  ( SNGL ( T S I  N 1 
X=10.0 
Y = 1 0 / X * * 5  
I F ( T S . G T . Y )  GO T O  442 
COMP=-SQRT(2*O)*FN*SIN(ANG/2*O-FN*PI*DN) 
IF  ( C O S  (AN5/2.O-FN*P 1 *DN ) ~ L T o  0.0 COMP=-COMP 
GO T O  443 
D P = S Q R T  ( A  )*DCOS ( R A G  1 I T S  I N 
COMP= SNGL (DP ) 

442 

443 UPP I =COM*EXP*tOMP*CMPLX ( C S ) 
N=IFIX((-PI+ANG)/(2.O*FN*PI ) + 0 . 5 )  
D N = F L O A T  ( N  1 

B O T L = S Q R T  ( T P I * R * A )  
E X P + C E X P ( C M P L X ( O . O * T P I * R * A  ) 

C A L L  F R N E L S  (CISIBOTL) 
C=SORT ( P I  /2 0 )  * ( 0. 5 - C  
S =  SQRT (P I /2 .O) * (S -O.5 )  
R A G =  ( P I  -ANG ) /  (2  O * F N )  

A=l.O+COS(ANG-2.O*FN*PI*DN) 

T S  I N = D S I N  ( R A G  1 
T S = A B S ( S N G L ( T S I N )  1 
I F ( T S . G T . Y )  GO T O  542 
COMP= SQRT(2.O)*FN*SIN(ANG/2.O-FNwPI+DN) 
IF(COS(ANG/2~O-FN*PI*DN)mLT~o~O) COMP=-COMP 
GO T O  123 

C O M P = S N G L ( D P )  
542 DP=SQRT(A) *DCOS(RAG) /TS IN  

123 U N P I = C O M * E X P * C O M P * C M P L X ( C * S )  
ANG=ANG* 183 O / P  I 
R V B = R E A L  (UPPI+UNPI 1 
U V B = A I M A G ( U P P I + U N P I  1 
R E T U R N  
END 
S U B R O U T I N E  F R N E L S ( C * S * X S )  ' 

D I M E N S I O N  A(12)*B(12)*CC(I2)*0(12) 
A ( 1  ) = l o 5 9 5 7 6 9 1 4 0  
A ( 2  ) =-0 C)ooaO 1 7 0 2  
A ( 3 ) =-6 0808568854 
A ( 4  ) =-0 000057636 1 
A ( 5 ) = 6 . 9 2 0 6 9 1 9 0 2  
A (6 ) =-0 00 16898657 
A ( 7 ) =-3.050485660 
A ( 8 ) = - 0 . 0 7 5 7 5 2 4 1 9  
A (9) =00850663781 
A ( 10 )  = - J . D 2 5 6 3 9 0 4  1 
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13 
20 

30 

40 
50 

60 

414 
RETURN 
C=-0.0 
S=-0.0 
RETURN 
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APPENDIX I11 

% 

A shadow boundary approximation of V B ( P ,  P ) for P =IT as given in 
Eq. (13) is obtained as follows: 

First examine I - = ( p ,  p , n) from Eqo.  (32) and (33). 

where a = 1 t c o s p  ( N  = 0) .  

Then le t  us note the following approximations: 

for Q small 

= -P tan (E) = 2 (E) 
tan (36) 

- v i €  
for B small. 

sin( 2) 2 (E) 
(36) tan tan (E) = i") = -P 

c o s  2n - v i €  
1 '  

for B small. 

The limiting operation then becomes 

(E) 



E'mploying the &all argument approximation for the Fresnel integral, 
it is seen that 

L 

Combining the results in Eqs. (35), ( 3 6 ) ,  (37), and (38) we obtain 

where the plus sign is associated with p = IT t c and the minus sign is 
associated with @ = IT - c . 

Now the s a m e  operations may be performed 6:n I+, (p ,  B y  n) 

For  e small ,  a good approximation would be 
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Then 

(42) 

jkp [ 1 tcos(p - 2 n ~  )] 
e 

2 
d-r - jr e 

Employing the large argument asymptotic expansion for the Fresnel  
integral given by 

2 oc - jx 
, for x largey - j  e 

(43) r e-jr2 dT 2x 
J 
X 

and combining the relationships of Eqs. (41) and (42), we find 

kp cos p - E) 4 
1 IT e - cot- x 2 -  

2n n 

Hence, the shadow boundary approximation for V,(p n) for 

 IT may be expressed as 
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where the t s ign  is for  p > IT and the - sign is for p < IT . 
The validity of Eq. (45) has been verified by comparison with 

results obtained from the eigenfunction formulation given by 

where V* is the geometrical optics component given by 

exp [ jkp cos(/3 4-   IT nN) 

if  -.IT < f3 + 2mnN < n 

fo r  N =  0, & 1, & 2 

0, otherwise. 

(47 1 V"(P,B) = 

and € m / n  i s  Neurnann's number. 
p and P employed in this report  is shown in Tables I and 11. Equation (45) 
can then be seen to  be a good shadow boundary approximation whose accur- 
acy increases for decreasing values of (1 t cos 

The comparison for typical ranges of . 
)kp 

On the shadow boundary, i. e., j3 = IT, VB is accurately given by 
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1 
8 
1 
8 
I 
I 
8 
I 
1 
1 
8 
I 
8 
I 
8 
I 
I 
I 
I 

P 
in degrees) 

170.0 

175.0 

176 .O 

177 .O 

178.0 

179.0 

180.0- 

180.0t 

181 .O 

182.0 

183.0 

184.0 

185.0 

190.0 

Ei ge nfunc ti on Fo rmul ati on 
of VB according to Eq. (46) 

-0.3614917 t j 0.0636647 

-0 .4173982t j  0.0306760 

-0.4291918 t j  0.0220558 

-0 ,4411354 t j  0.01266105 

-0.4531978 t j 0.0024462 

-0,4653436 - j  0.0086347 

-0.4775324 - j 0.0206277 

0.5224676 - j  0.0206277 

0.5102809 - j  0.0326225 

0.4981415 - j 0.0437082 

0.4860898 - j  0.0539315 

0.4741612 - j 0.0633381 

0.4623868 - j 0.0719734 

0.4066414 - j 0.1050881 

45 

Shadow Boundary Approxi- 
mation of VB according to 
Ea. (45) 

~~ ~~~ ~~~ 

-0.3631518 t j 0.0672927 

-0 .4174924 t j  0.0300565 

-0.4293600 t j 0.0211283 

-0.4414378 t j 0.0115609 

-0.4536685 t j 0.0012868 

-0.4659914 - j 0.0097629 

-0.4783417 - j 0.0216582 

0.5216583 - j 0.0216582 

0.5093494 - j 0.0335120 

0.4971506 - j 0.0444371 

0.4851258 - j 0.0545027 

0.4733345 - j 0.0637767 

0.4618322 - j 0.0723250 

0.4103997 - j 0.1062834 



TABLE I1 
VB(p=3.OX,p.,n= 1.5) 

B 
in degrees) 

170.0 

175.0 

176.0 

177 .O 

178 .O 

179.0 

180.0’ 

18Q.Ot 

181 . O  

182.0 

183.0 

184.0 

185.0 

190 .O 

Eigenfunction Formulation 
of VB according to Eq. (46) 

-0.2992610 t j 0,0963678 

-0.3848230 t j 0.0640383 

-0.4042744 + j 0.0530977 

-0.4243764 t j 0.0402138 

-0.4450208 + j 0.0251690 

-0.4660657 t j 0.0077345 

-0.4873291 - j 0.0123277 

0 3126709 - j 0.0123277 

0.4914107 - j 0.0323876 

0.4703744 - j 0.0498169 

0.4497428 - j 0.0648551 

0.4296558 - j 0.0777343 

0.4102195 - j 0.0886765 

0.3247258 - j 0.1211227 

Shadow Boundary Approxi- 
mation of VB according to 
Ea. (45) 

~ 

-0.3196212 + j  0.1153991 

-0.3864326 + j  0.0668182 

-0.4049357 + j 0.0544522 

-0.4245673 t j 0.0406628 

-0 .4450639t j  0.0251363 

-0.4661435 + j 0.0075329 

-0.4874955 - j 0.0125045 

0.5125045 - j 0.0125045 

0.4912241 - j 0.0324696 

0.4703585 - j 0.0498561 

0.4502139 - j 0.0650171 

0.4310662 - j 0.0782865 

0.4131695 - j 0.0899702 

0.3506759 - j  0.1323250 

8 
8 
8 
1 
1 

8 
1 
1 
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APPENDIX IV 

The free-  space reflection coefficient of a ground-plane mounted 
parallel-plate waveguide was analyzed by wedge difffraction and com- 
pared to results f rom other methods of analysis in Ref. 3 .  The compari- 
son showed close agreement in the reflection coefficient magnitude. The 
comparison in reflection coefficient phase is shown in Fig.  24. The 
result  of H a r r i n g t ~ n ' ~  is essentially that from a Fourier Transform 
solution with a dominant mode assumption. Do Arnaral and Bautista 
Vida1l4 included the effects of higher-order modes in a variational 
solution. The Geometrical Theory of Diffraction (GTD) results were 
obtained by Yee, Felsen and Keller . l5 
introduced by the presence of higher order  modes is thus demonstrated 
by this comparison. 

The phase correction factor 

It is believed that the presence of higher order  modes will enter 
into the reflection coefficient analysis of this report in another regard, 
i . e . ,  the on-axis radiation from the free-space guide as depicted in 
Fig.  25. 
pression with a dominant mode a ~ s u r n p t i o n ' ~  has been performed. 
detailed comparison of this result with that obtained from wedge dif- 
fraction analysis wi l l  be given in Ref. 6 .  
agreement is found in the magnitude but some phase differences (on the 
order  of 10" for a guide width of 0.278X) is noted. 
the presence of higher order  modes causes this phase deviation in a 
manner similar to that for the free-space reflection coefficient. 

Calculations of the on-axis field employing a variational ex- 
A 

In general, however, close 

It is believed that 
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25. On-axis f ie ld.  
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